Can Emission Measure Distributions Derived from Extreme-ultraviolet Images Accurately Constrain High-temperature Plasma?

Author:

Athiray P. S.ORCID,Winebarger Amy R.ORCID

Abstract

Abstract Measuring the relative amount of high-temperature, low emission measure (EM) plasma is considered to be a smoking-gun observation to constrain the frequency of plasma heating in coronal structures. Often, narrowband, extreme-ultraviolet images, such as those obtained by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), are used to determine the EM distribution, though the sensitivity to high-temperature plasma is limited. Conversely, the soft X-ray wavelength range offers multiple high-temperature diagnostics, including emission lines of N vii, O vii, O viii, Fe xvii, Ne ix, and Mg xi, which can provide tight constraints to the high-temperature plasma in the log T = 6.1–6.7 (∼1–5+ MK) range. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS), a slitless spectrograph launched on a NASA sounding rocket on 2021 July 30, resolved an X-ray-bright point in multiple emission lines in the soft X-ray wavelength range. Using coordinated observations of the same X-ray-bright point from SDO/AIA, we compare and contrast the EM distributions from the EUV image data, the X-ray spectra, and the combined EUV and X-ray data set. In this paper, we demonstrate that EM distributions from SDO/AIA data alone can overestimate the amount of high-temperature (log T > 6.4) plasma in the solar corona by a factor of 3–15. Furthermore, we present our effort to cross-calibrate Hinode/X-ray Telescope (XRT) response functions by comparing the observed XRT fluxes with the predicted ones from combined MaGIXS-1 + AIA EM analysis.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Publisher

American Astronomical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3