Systematic Uncertainties of Atomic Data in Photoionization Modeling

Author:

Ballhausen R.ORCID,Kallman T. R.ORCID,Gu L.ORCID,Paerels F.ORCID

Abstract

Abstract Fitting plasma models to high-quality spectra is a crucial tool for deriving diagnostics about the physical conditions in various astrophysical sources. Despite decades of model development, this prescription often provides an unsatisfying description of observational data. We explore some of the origins of the failure of fits of photoionized plasma models to high-resolution X-ray spectra. In particular, we test whether systematic uncertainties in underlying atomic data can account for data model discrepancies, and whether including model uncertainties during spectral fitting can provide statistically acceptable fits and reasonable parameter estimates. We fit Chandra/HETG spectra of NGC 3783 with the photoionized absorber model warmabs. We use the remaining data model discrepancies to estimate the systematic uncertainties of bound–bound radiative rates for individual transitions quantitatively. We then include these uncertainties into warmabs to return a total model uncertainty. We find residual data model discrepancies which are due to systematic errors that cannot be accounted for solely by a modification of the optical depth of strong absorption lines. Furthermore, statistical uncertainties still dominate the fit statistics. The relevance of model uncertainties in spectral fitting will vary on a case-by-case basis. However, they are likely to have a minor effect on most of the currently existing data sets. We conclude that while the quality of atomic data does have an effect on fitting photoionization models, and so demands further improvement, uncertainties in radiative rates cannot be held solely responsible for statistically unacceptable fits. Other sources of systematic uncertainties are likely to be of comparable importance and require further investigation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3