A High-pressure Filled Ice in the H2O–CO2–CH4 System, with Possible Consequences for the CO2–CH4 Biosignature Pair

Author:

Levi A.ORCID,Bansal A.,Sasselov D.ORCID

Abstract

Abstract Here we constrain the speciation of carbon that may outgas in ocean exoplanets. Ocean exoplanets likely have at least a few percent by mass of water, which is sufficient to build a high-pressure ice layer between a rocky interior and the outer hydrosphere. We study the possible formation of a filled ice in the ternary system H2O–CO2–CH4. The incorporation of CH4 and CO2 in filled ice would be an important mechanism for transporting carbon across a high-pressure ice mantle into the atmosphere. The CH4–CO2 pair is also important as a potential biosignature. We find that a filled ice in the system H2O–CO2–CH4 is possible though enriched in CH4. CO2 cannot account for more than 15% by mole of the carbon content of the filled ice. Such a filled ice is less dense than an overlying ocean and would therefore discharge into the ocean, depressurize, and outgas its carbon content into the atmosphere. A high-pressure, water-rich mantle in ocean worlds may therefore support the transport of carbon from the interior into the atmosphere. More than 75% by mole of this carbon would be reduced. As long as CH4 exists/is produced in the interior and the ice mantle convects, thus transporting chemical species outward, a flux of carbon enriched in CH4 would outgas. If this persists over geological time it would negate atmospheric sinks for CH4, and explain low concentrations of atmospheric CO2. If the contrary is correct than the interior of the planet may be oxidizing.

Funder

Simons Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-Earths and Earth-like exoplanets;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3