Abstract
Abstract
The specific star formation rate (sSFR) is commonly used to describe the level of galaxy star formation (SF) and to select quenched galaxies. However, since it is a relative measure of the young-to-old population, an ambiguity in its interpretation may arise because a low sSFR can be due to either a substantial previous mass buildup or SF activity that is low. We show, using large samples spanning 0 < z < 2, that the normalization of the star formation rate (SFR) by the physical extent over which SF is taking place (i.e., the SFR surface density, ΣSFR) overcomes this ambiguity. ΣSFR has a strong physical basis, being tied to the molecular gas density and the effectiveness of stellar feedback, so we propose ΣSFR–M
* as an important galaxy evolution diagram to complement (s)SFR–M
* diagrams. Using the ΣSFR–M
* diagram we confirm the Schiminovich et al. result that the level of SF along the main sequence today is only weakly mass-dependent—high-mass galaxies, despite their redder colors, are as active as blue, low-mass ones. At higher redshift, the slope of the “ΣSFR main sequence” steepens, signaling the epoch of bulge buildup in massive galaxies. We also find that ΣSFR based on the optical isophotal radius more cleanly selects both starbursting and spheroid-dominated (early-type) galaxies than the sSFR. One implication of our analysis is that the assessment of the inside-out versus outside-in quenching scenarios should consider both sSFR and ΣSFR radial profiles, because ample SF may be present in bulges with low sSFRs (red color).
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献