LIMpy: A Semianalytic Approach to Simulating Multiline Intensity Maps at Millimeter Wavelengths

Author:

Roy AnirbanORCID,Valentín-Martínez Dariannette,Wang Kailai,Battaglia NicholasORCID,van Engelen AlexanderORCID

Abstract

Abstract Mapping of multiple lines such as the fine-structure emission from [C ii] (157.7 μm), [O iii] (52 and 88.4 μm), and rotational emission lines from CO are of particular interest for upcoming line intensity mapping (LIM) experiments at millimeter wavelengths, due to their brightness features. Several upcoming experiments aim to cover a broad range of scientific goals, from detecting signatures of the epoch of reionization to the physics of star formation and its role in galaxy evolution. In this paper, we develop a semianalytic approach to modeling line strengths as functions of the star formation rate (SFR) or infrared luminosity based on observations of local and high-z galaxies. This package, LIMpy (Line Intensity Mapping in Python), estimates the intensity and power spectra of [C ii], [O iii], and CO rotational transition lines up to the J levels (1–0) to (13–12) based both on analytic formalism and on simulations. We develop a relation among halo mass, SFR, and multiline intensities that permits us to construct a generic formula for the evolution of several line strengths up to z ∼ 10. We implement a variety of star formation models and multiline luminosity relations to estimate the astrophysical uncertainties on the intensity power spectrum of these lines. As a demonstration, we predict the signal-to-noise ratio of [C ii] detection for an EoR-Spec-like instrument on the Fred Young Submillimeter Telescope. Furthermore, the ability to use any halo catalog allows the LIMpy code to be easily integrated into existing simulation pipelines, providing a flexible tool to study intensity mapping in the context of complex galaxy formation physics.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3