An Improved GPU-based Ray-shooting Code for Gravitational Microlensing

Author:

Zheng WenwenORCID,Chen XuechunORCID,Li Guoliang,Chen Hou-ZunORCID

Abstract

Abstract We present an improved inverse-ray-shooting code based on graphics processing units (GPUs) to generate microlensing magnification maps. In addition to introducing GPUs to accelerate the calculations, we also invest effort into two aspects: (i) A standard circular lens plane is replaced by a rectangular one to reduce the number of unnecessary lenses as a result of an extremely prolate rectangular image plane. (ii) An interpolation method is applied in our implementation, achieving significant acceleration when dealing with the large number of lenses and light rays required by high-resolution maps. With these applications, we have greatly reduced the running time while maintaining high accuracy: The speed was increased by about 100 times compared with an ordinary GPU-based inverse-ray-shooting code and a GPU-D code when handling a large number of lenses. If a high-resolution situation with up to 10,0002 pixels, resulting in almost 1011 light rays, is encountered, the running time can also be reduced by two orders of magnitude.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-epoch and Differential Astrometric Microlensing of Quasars;The Astrophysical Journal;2024-07-01

2. How to break the mass sheet degeneracy with the light curves of microlensed Type Ia supernovae;Monthly Notices of the Royal Astronomical Society;2024-06-05

3. Microlensing bias on the detection of strong lensing gravitational wave;Science China Physics, Mechanics & Astronomy;2024-05-14

4. Microlensing of Strongly Lensed Quasars;Space Science Reviews;2024-02

5. Essentials of Strong Gravitational Lensing;Space Science Reviews;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3