Abstract
Abstract
Reacting astrophysical flows can be challenging to model, because of the difficulty in accurately coupling hydrodynamics and reactions. This can be particularly acute during explosive burning or at high temperatures where nuclear statistical equilibrium is established. We develop a new approach, based on the ideas of spectral deferred corrections (SDC) coupling of explicit hydrodynamics and stiff reaction sources as an alternative to operator splitting, that is simpler than the more comprehensive SDC approach we demonstrated previously. We apply the new method to a double-detonation problem with a moderately sized astrophysical nuclear reaction network and explore the time step size and reaction network tolerances, to show that the simplified-SDC approach provides improved coupling with decreased computational expense compared to traditional Strang operator splitting. This is all done in the framework of the Castro hydrodynamics code, and all algorithm implementations are freely available.
Funder
DOE Office of Nuclear Physics
DOE SciDAC
DOE ECP
NSF REU
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献