From Halos to Galaxies. VII. The Connections between Stellar Mass Growth History, Quenching History, and Halo Assembly History for Central Galaxies

Author:

Lyu CheqiuORCID,Peng Yingjie,Jing YipengORCID,Yang XiaohuORCID,Ho Luis C.ORCID,Renzini AlvioORCID,Wang BitaoORCID,Wang KaiORCID,Xu Bingxiao,Zhao Dingyi,Dou JingORCID,Gu QiushengORCID,Maiolino RobertoORCID,Mannucci FilippoORCID,Yuan FengORCID

Abstract

Abstract The assembly of galaxies over cosmic time is tightly connected to the assembly of their host dark matter halos. We investigate the stellar mass growth history and the chemical enrichment history of central galaxies in the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory. We find that the derived stellar metallicity of passive central galaxies is always higher than that of the star-forming ones. This stellar metallicity enhancement becomes progressively larger toward low-mass galaxies (at a given epoch) and earlier epochs (at a given stellar mass), which suggests strangulation as the primary mechanism for star formation quenching in central galaxies not only in the local Universe but also very likely at higher redshifts up to z ∼ 3. We show that at the same present-day stellar mass, passive central galaxies assembled half of their final stellar mass ∼2 Gyr earlier than star-forming central galaxies, which agrees well with the semi-analytic model. Exploring the semi-analytic model, we find that this is because passive central galaxies reside in, on average, more massive halos with a higher halo mass increase rate across cosmic time. As a consequence, passive central galaxies are assembled faster and also quenched earlier than their star-forming counterparts. While at the same present-day halo mass, different halo assembly history also produces a very different final stellar mass of the central galaxy within, and halos assembled earlier host more massive centrals with a higher quenched fraction, in particular around the “golden halo mass” at 1012 M . Our results call attention back to the dark matter halo as a key driver of galaxy evolution.

Funder

National Science Foundation of China

National Key R&D Program of China

China Manned Space Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3