Reconstructing the XUV Spectra of Active Sun-like Stars Using Solar Scaling Relations with Magnetic Flux

Author:

Namekata KosukeORCID,Toriumi ShinORCID,Airapetian Vladimir S.ORCID,Shoda MunehitoORCID,Watanabe KyokoORCID,Notsu YutaORCID

Abstract

Abstract The Kepler space telescope and Transiting Exoplanet Survey Satellite unveiled that Sun-like stars frequently host exoplanets. These exoplanets are subject to fluxes of ionizing radiation in the form of X-ray and extreme-ultraviolet (EUV) radiation that may cause changes in their atmospheric dynamics and chemistry. While X-ray fluxes can be observed directly, EUV fluxes cannot be observed because of severe interstellar medium absorption. Here we present a new empirical method to estimate the whole stellar X-ray plus EUV (XUV) and far-UV (FUV) spectra as a function of total unsigned magnetic fluxes of stars. The response of the solar XUV and FUV spectrum (0.1–180 nm) to the solar total unsigned magnetic flux is investigated by using the long-term Sun-as-a-star data set over 10 yr, and the power-law relation is obtained for each wavelength with a spectral resolution of 0.1–1 nm. We applied the scaling relations to active young Sun-like stars (G dwarfs), EK Dra (G1.5V), π 1 Uma (G1.5V), and κ 1 Ceti (G5V) and found that the observed spectra (except for the unobservable longward EUV wavelength) are roughly consistent with the extension of the derived power-law relations with errors of an order of magnitude. This suggests that our model is a valuable method to derive the XUV/FUV fluxes of Sun-like stars, including the EUV band mostly absorbed at wavelengths longward of 36 nm. We also discuss differences between the solar extensions and stellar observations at wavelengths in the 2–30 nm band and conclude that simultaneous observations of magnetic and XUV/FUV fluxes are necessary for further validations.

Funder

MEXT ∣ Japan Society for the Promotion of Science

NASA ADAP award program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3