A Gap in the Densities of Small Planets Orbiting M Dwarfs: Rigorous Statistical Confirmation Using the Open-source Code RhoPop

Author:

Schulze J. G.ORCID,Wang 王 Ji 吉ORCID,Johnson J. A.ORCID,Gaudi B. S.ORCID,Rodriguez Martinez R.ORCID,Unterborn C. T.ORCID,Panero W. R.ORCID

Abstract

Abstract Using mass–radius composition models, small planets (R ≲ 2 R ) are typically classified into three types: iron-rich, nominally Earth-like, and those with solid/liquid water and/or atmosphere. These classes are generally expected to be variations within a compositional continuum. Recently, however, Luque & Pallé observed that potentially Earth-like planets around M dwarfs are separated from a lower-density population by a density gap. Meanwhile, the results of Adibekyan et al. hint that iron-rich planets around FGK stars are also a distinct population. It therefore remains unclear whether small planets represent a continuum or multiple distinct populations. Differentiating the nature of these populations will help constrain potential formation mechanisms. We present the RhoPop software for identifying small-planet populations. RhoPop employs mixture models in a hierarchical framework and a nested sampler for parameter and evidence estimates. Using RhoPop, we confirm the two populations of Luque & Pallé with >4σ significance. The intrinsic scatter in the Earth-like subpopulation is roughly half that expected based on stellar abundance variations in local FGK stars, perhaps implying M dwarfs have a smaller spread in the major rock-building elements (Fe, Mg, Si) than FGK stars. We apply RhoPop to the Adibekyan et al. sample and find no evidence of more than one population. We estimate the sample size required to resolve a population of planets with Mercury-like compositions from those with Earth-like compositions for various mass–radius precisions. Only 16 planets are needed when σ M p = 5 % and σ R p = 1 % . At σ M p = 10 % and σ R p = 2.5 % , however, over 154 planets are needed, an order of magnitude increase.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3