Atmospheric Loss in Giant Impacts Depends on Preimpact Surface Conditions

Author:

Lock Simon J.ORCID,Stewart Sarah T.ORCID

Abstract

Abstract Earth likely acquired much of its inventory of volatile elements during the main stage of its formation. Some of Earth’s proto-atmosphere must therefore have survived the giant impacts, collisions between planet-sized bodies, that dominate the latter phases of accretion. Here, we use a suite of 1D hydrodynamic simulations and impedance-match calculations to quantify the effect that preimpact surface conditions (such as atmospheric pressure and the presence of an ocean) have on the efficiency of atmospheric and ocean loss from protoplanets during giant impacts. We find that—in the absence of an ocean—lighter, hotter, and lower-pressure atmospheres are more easily lost. The presence of an ocean can significantly increase the efficiency of atmospheric loss compared to the no-ocean case, with a rapid transition between low- and high-loss regimes as the mass ratio of atmosphere to ocean decreases. However, contrary to previous thinking, the presence of an ocean can also reduce atmospheric loss if the ocean is not sufficiently massive, typically less than a few times the atmospheric mass. Volatile loss due to giant impacts is thus highly sensitive to the surface conditions on the colliding bodies. To allow our results to be combined with 3D impact simulations, we have developed scaling laws that relate loss to the ground velocity and surface conditions. Our results demonstrate that the final volatile budgets of planets are critically dependent on the exact timing and sequence of impacts experienced by their precursor planetary embryos, making atmospheric properties a highly stochastic outcome of accretion.

Funder

National Aeronautics and Space Administration

National Science Foundation

UKRI ∣ Natural Environment Research Council

Harvard University

California Institute of Technology

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3