Decision Tree-Based Classification Approach to Discover Factors Affecting Vitamin D Level with Machine Learning

Author:

Ünal Ceyda1ORCID,Çılgın Cihan2ORCID,Albaş Süleyman3ORCID,Koç Esra Meltem4ORCID

Affiliation:

1. Dokuz Eylül Üniversitesi Yönetim Bilişim Sistemleri Bölümü

2. BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ

3. Karabağlar 17 Nolu Aile Sağlığı Merkezi

4. İZMİR KATİP ÇELEBİ ÜNİVERSİTESİ, TIP FAKÜLTESİ

Abstract

Purpose: Vitamin D level is emphasized as an important biomarker in determining risk factors for different diseases. Vitamin D is an important vitamin for human health and its deficiency is associated with serious health problems. Therefore, it is of great importance to detect vitamin D deficiency, which can be easily prevented and treated. The possible relationship between vitamin D deficiency and musculoskeletal pain, osteoporosis, diabetes mellitus, hypertension is frequently discussed in researches. In this research, it is aimed to analyze the factors in determining the vitamin D level and the decision rules related to it. Methods: A descriptive framework based on one of the machine learning techniques, that is decision tree is followed. The data used to create the decision rules were obtained from volunteers between the ages of 18-85 who applied to Izmir Katip Çelebi University Atatürk Training and Research Hospital Infectious Diseases and Family Medicine Polyclinics and agreed to participate in the study between 01.03.2017 and 01.09.2017. Results: It was observed that age, gender and laboratory test values are strong predictors for vitamin D level. As a result of two CART (Classification and Regression Trees) models, %90.47 and %95 predictive accuracies were observed respectively. In the first model, uric acid, age and creatine; in the second model TSH, ALP and smoking(yes) were the most important three biomarkers affecting vitamin D level. Discussion: The collected features give a comprehensive list of variables that have an effect on vitamin D in the dataset under consideration. Important findings of the study include not only the identification of these variables, but also the effective categorization determination procedures. In contrast to previous research, the Age variable is the most influential factor within the scope of this dataset, which includes demographic information on patients and their existing disorders.

Publisher

Dokuz Eyul Universitesi Saglik Bilimleri Enstitusu

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3