Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle

Author:

Alwanda Muhammad Rafly,Ramadhan Raden Putra Kurniawan,Alamsyah Derry

Abstract

Recognition of objects to date has been widely applied in various fields, for example in handwritten recognition. This research utilizes the ability of CNN to use LeNet-5 architecture for the introduction of doodle types with 5 object images, namely clothes, pants, chairs, butterflies and bicycles. Each doodle object consists of 30 images with a total dataset of 150 images. The test results show that the first, second and fourth scenarios of bicycle objects are more recognized with an accuracy value of 93% - 98%, recall 86% - 93% and precision 81% - 93%, clothes objects are more recognized in the third scenario with an accuracy value of 94%, 86% recall, and 83% precision.

Publisher

LPPM STMIK Global Informatika MDP

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Topics Using Bi-LSTM and CNN with the Feature Expansion on Twitter;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

2. Number Recognition System-based Virtual Sketch with Hand Gestures Using Attentional Convolutional Network;2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC);2023-03-08

3. Improved Convolutional Neural Image Recognition Algorithm based on LeNet-5;Journal of Computer Networks and Communications;2022-10-08

4. Identification of Human Sperm based on Morphology Using the You Only Look Once Version 4 Algorithm;International Journal of Advanced Computer Science and Applications;2022

5. Classification of Calligraphy Writing Types Using Convolutional Neural Network Method (CNN);Procedia of Engineering and Life Science;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3