Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada

Author:

Novara Ivan L., ,Berdichevsky Daniel B.,Piacentini Ruben D, ,

Abstract

Subsurface temperatures have been measured in different regions of the world, usually near the surface up to a depth of about a hundred meters. In this work a forward model calculation for a Northern Hemisphere soil temperature site at Kapuskasing, Canada, is presented, employing the solution of the differential equation of heat conduction through a semi-infinite homogeneous solid, subject to surface boundary conditions determined by surface air temperature. In this way, a detailed analysis is made of the subsurface temperature as a function of ground depth and for the time interval ranging from 1970 to the future (including the next century), for different scenarios of climate change. From these results, it was possible to determine the following characteristic quantities: (a) the depth where the surface perturbation (practically) finishes (in the range of about 180-200 m); (b) the depth where the subsurface temperature changes its slope from negative to positive; (c) the temperature change at the surface for the years where data exist; (d) the thermal gradient at steady state in the starting year (1880); (e) the temperature differences extrapolated at surface and at a 20 m depth, this last value corresponding to the depth at which seasonal and diurnal temperature variations are negligible; (f) the heat flow at surface to the inner part of the soil attributed to climate change, and (g) the temperature changes at surface for the 100 years interval (1980-2080) and mainly for the next century (2080-2180), for each site and for each IPCC Representative Concentration Pathway (RCP) scenario. As an example, the impact of the change in mean annual soil temperature due to global warming in near-surface geothermal energy is described.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3