Abstract
W niniejszym artykule porównujemy różne metody oceny konsensusu w testach koniunktury, w których respondenci wyrażają oczekiwania na skali uporządkowanej. Wiarygodna metoda pomiaru siły konsensusu w oczekiwaniach respondentów dostarczyłaby ekonomistom cennych informacji, stanowiąc wiodący wskaźnik nastrojów podmiotów gospodarczych. Nie ma jednak jednej ogólnie przyjętej miary matematycznej służącej do oceny zgodności między wyrażanymi przez respondentów opiniami. W literaturze wymienianych jest kilka miar, w tym wskaźniki oparte na miarach dyspersji, entropii i wielowymiarowym simpleksie. W artykule przedstawiamy zdefiniowane w literaturze miary konsensusu oraz omawiamy ich zalety i ograniczenia. Następnie wykorzystujemy te wskaźniki do analizy oczekiwań wyrażonych w teście koniunktury w przetwórstwie przemysłowym w Polsce i porównujemy wyniki dla różnych zmiennych ekonomicznych. W kilku przypadkach znajdujemy powtarzalne schematy w zachowaniu miar konsensusu: oczekiwania cenowe charakteryzują się najwyższym stopniem konsensusu, a oczekiwania na temat produkcji i zamówień – najniższym. Wskazujemy również powiązania między stopniem konsensusu a stopniem optymizmu wśród respondentów mierzonym statystykami bilansowymi w przypadku cen, zatrudnienia i ogólnej sytuacji gospodarczej.
Publisher
Szkoła Główna Handlowa GV
Reference15 articles.
1. Adamowicz E., Walczyk K. [2017], Zaburzenia cykliczności aktywności gospodarczej w Polsce w świetle wyników badania koniunktury gospodarczej IRG SGH, Prace i Materiały Instytutu Rozwoju Gospodarczego SGH, 101.
2. Bachmann R., Elstner S., Sims E. R. [2013], Uncertainty and Economic Activity: Evidence from Business Survey Data, American Economic Journal: Macroeconomics, American Economic Association, 5 (2): 217–249.
3. Claveria O. [2019], Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations, Journal for Labour Market Research, 53 (3): 1–10.
4. Claveria O., Monte E., Torra S. [2019], Economic Uncertainty: A Geometric Indicator of Discrepancy Among Experts’ Expectations, Social Indicators Research, 143: 95–114.
5. Conflitti C. [2011], Measuring Uncertainty and Disagreement in the European Survey of Professional Forecasters, ECARES (Université libre de Bruxelles) Working Paper.