Convex Polygonal Hull for a Pair of Irregular Objects

Author:

Dubynskyi V.M.1,Pankratov O.V.1ORCID,Romanova T.E.1ORCID,Lysenko B.S.2,Kayafyuk R.V.2,Zhmud O.O.3

Affiliation:

1. A.M. Pidgorny Institute of Mechanical Engineering Problems of the NAS of Ukraine, Kharkiv

2. Kharkiv National University of Radio Electronics, Ukraine

3. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv

Abstract

Introduction. Optimization placement problems are NP-hard. In most cases related to cutting and packing problems, heuristic approaches are used. The development of analytical methods for mathematical modeling of the problems is of paramount important for expanding the class of placement problems that can be solved optimally using state of the art NLP-solvers. The problem of placing two irregular two-dimensional objects in a convex polygonal region of the minimum size, which is a convex polygonal hull of the minimum area or perimeter, is considered. Continuous rotations and translations of non-overlapping objects are allowed. To solve the problem of optimal compaction of a pair of objects, two algorithms are proposed. The first is a sequentially search for local extrema on all feasible subdomains using a solution tree. The second algorithm searches for a locally optimal extremum on a single subdomain using a "good" feasible starting point. Purpose of the paper. Show how to construct a minimal convex polygonal hull for two continuously moving irregular objects bounded by circular arcs and line segments. Results. A mathematical model is constructed in the form of a nonlinear programming problem using the phi-function technique. Two algorithms are proposed for solving the problem of placing a pair of objects in order to minimize the area and perimeter of the enclosing polygonal area. The results of computational experiments are presented. Conclusions. The construction of a minimal convex polygonal hull for a pair of two-dimensional objects having an arbitrary spatial shape and allowing continuous rotations and translations makes it possible to speed up the process of finding feasible solutions for the problem of placing a large number of objects with complex geometry. Keywords: convex polygonal hull, irregular objects, phi-function technique, nonlinear optimization.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

Reference18 articles.

1. Preparata F.P., Shamos M.I. Computational Geometry: An Introduction. Springer. 1985. 400 p. doi.org/10.1007/978-1-4612-1098-6

2. Avis D., Bremner D., Seidel R. How good are convex hull algorithms? Computational Geometry: Theory and Applications. 1997. 7 (5–6). P. 265–301. doi.org/10.1016/S0925-7721(96)00023-5

3. Cormen T.H., Leiserson C.E., Ronald L. Rivest R.L., Stein C. Introduction to Algorithms, Second Edition. Section 33.3: Finding the convex hull. MIT Press and McGraw-Hill. 2001. P. 947–957. ISBN 0-262-03293-7

4. De Berg M., Cheong O., Van Kreveld M., Overmars M. Computational Geometry Algorithms and Applications. Berlin: Springer. 2008. P. 2–14. doi:10.1007/978-3-540-77974-2

5. Scheithauer G. Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches. Solution Methods. Springer. 2018. 410 p. doi.org/10.1007/978-3-319-64403-5

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Model and Solution Algorithm for Virtual Localization Problem;Cybernetics and Computer Technologies;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3