Methods of Combating the Accumulation of Rounding Error When Solving Problems of Trans-Computational Complexity

Author:

Zadiraka Valerii1ORCID,Shvidchenko Inna1ORCID

Affiliation:

1. V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Kyiv

Abstract

Introduction. The main attention is paid to the need to take into account estimates of rounding errors when solving problems of transcomputational complexity. Among such tasks, one can highlight the tasks of calculating systems of linear algebraic equations with the number of unknowns in the tens of millions, digital signal processing, calculating nuclear reactors, modeling physical and chemical processes, aerodynamics, information protection, etc. Ignoring the rounding error when solving them leads to the fact that sometimes we obtain computer solutions that do not correspond to the physical content of the problem. The purpose of the article. It is shown how, using estimates of rounding errors, to build computational algorithms resistant to rounding errors. At the same time, the following are taken into account: the rounding rule, the calculation mode, the quality of rounding error estimates (non-improving estimate, asymptotic estimate, imputed estimate). If computing resources are available, it is advisable to use asymptotic and probabilistic estimates as they are more accurate compared to majorant estimates. The results. It is shown how the estimates of rounding errors are used in modern computer technologies to obtain ε-solution of the following problems of applied mathematics: – calculation of integrals from fast oscillating functions; – solving problems of digital signal processing; – calculating the discrete Fourier transform; – multi-bit arithmetic; – computer steganography. The greatest attention is paid to T-effective algorithms for calculating the discrete Fourier transform and solving the problems of spectral and correlation analysis of random processes. These classes of problems are included as components in solving problems of two-key cryptography and computer steganography. Conclusions. The importance of taking into account estimates of rounding errors in modern computer technologies for solving a number of classes of computational and applied mathematics problems is shown. Keywords: rounding error, computer technology, discrete Fourier transform, integration of fast oscillating functions, information security.

Publisher

V.M. Glushkov Institute of Cybernetics

Reference12 articles.

1. Zadiraka V.K., Shvidchenko I.V. ε-solution of the problem. Collection of materials of the problem-scientific interdisciplinary conference “Information problems of computer systems, law, power engineering, design and management” (ISCM-2022)”, July 14–15, 2022. Nadvirna, 2022. P. 29–32. (in Ukrainian).

2. Zadiraka V.K. The theory of computing the Fourier transform. Kyiv: Naukova dumka, 1983. 216 p. (in Russian).

3. Zadiraka V.K., Tereshchenko A.M. Computer Arithmetics of Multi-Digits Numbers in Sequential and Parallel Calculation Models. Kyiv: Naukova Dumka, 2021. 136 p. (in Ukraine). https://books-nasu.org.ua/computer-arithmetics-of-multi-digits-numbers-in-sequential-and-parallel-calculation-models/

4. Sergienko I.V., Zadiraka V.K., Lytvyn O.M. Elements of the General Theory of Optimal Algorithms. Springer, 2021. P. 378. https://doi.org/10.1007/978-3-030-90908-6

5. Zadiraka V.K., Luts L.V., Shvidchenko I.V. Theory of integrals computing from fast oscillating functions. Kyiv: Naukova Dumka, 2023. 472 p. (in Ukrainian). https://doi.org/10.15407/978-966-00-1843-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3