The synaptonemal complexes of Caenorhabditis elegans: duplication mutants sDp1 and mnDp1, disjunction regulator regions and aneuploidy

Author:

Goldstein Paul1

Affiliation:

1. 1Department of Biological Sciences, 500 west University Avenue, University of Texas at El Paso, El Paso, TX 79968, USA;, Email: drpaulgoldstein@yahoo.com

Abstract

AbstractThe duplication mutants sDp1 and mnDp1 in Caenorhabditis elegans differ in their size and recombination/pairing strategies within the pachytene nucleus. mnDp1 is a duplication of approximately 18% of the X chromosome with the duplicated segment transposed and inserted into linkage group V. sDp1 is a free duplication which covers 30 map units of linkage group I and crossing-over has been determined genetically with its homologue. Analysis of the synaptonemal complexes (SC) and pachytene karyotypes of both duplication mutants reveal that there is an extension of one of the SCs in mnDp1 while the sDp1 free duplication partially pairs with its homologue along a small portion of its length. The remaining region exists as a univalent in the pachytene nucleus. This indicates that there is at least one SC initiation site on the sDp1 free duplication. Only bivalent pairing is permitted and there are no trivalents. To some extent, the autosomes preferentially pair at the exclusion of the sDp1 duplication. Switching of pairing partners was evident between the duplication and the homologue, probably because of the size of the duplication. Thus, the mechanism of chromosome segregation in the two duplications is different. The number of Disjunction Regulator Regions, which are associated with X-chromosome nondisjunction, was three in both mutants compared to six in wild-type. The number of males produced in mnDp1 was 1.0%, in sDp1 it was 2.0%, while in wild-type it is 0.3%. Recombination nodules were not observed in any nuclei. The ultimate goal of these studies is to correlate the physical and genetic maps and in this study linkage group I has been identified in the pachytene nucleus.

Publisher

Brill

Subject

Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3