Seasonal Changes in Callose Levels and Fluorescein Translocation in the Phloem of Vitis Vinifera L.

Author:

Aloni Roni,Peterson Carol A.

Abstract

The secondary phloem of Vitis vinifera L. is characterised by a radial gradient of sieve tube diameters. Sieve tubes maturing early in the growing season have the largest diameters; those maturing late in the season have the smallest. In early spring, masses of winter dormancy callose are gradually digested in a polar radial pattern, proceeding outwards from the cambium. The fluorescent dye, fluorescein, was used to detect translocation in sieve tubes. During spring, dye translocation was first observed in the wider sieve tubes produced near the end of the previous year and wh ich had reduced amounts of callose. But translocation was not observed in the very narrow sieve tubes formed at the end of the year although they were the first to be callose free. The reactivated sieve tubes functioned for about one month. New sieve tubes differentiated three weeks after dormancy callose breakdown and started to function about one week later, so that the transition of translocation activity from the sieve tubes of the previous year to those of the current year is relatively rapid. The sieve tubes formed toward the end of the growing season (but not the narrowest ones formed at the very end of the season) function during parts of two successive seasons, while the sieve tubes forrned early in the season usually function during the first year only. Callose amounts increase gradually during summer in both the old and new sieve tubes and become relatively heavy in the old ones. At this developmental stage, translocation occurs through young sieve plates with relatively high callose deposits.

Publisher

Brill

Subject

Forestry,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3