Wood evolution: Baileyan trends and Functional traits in the fossil record

Author:

Wheeler Elisabeth A.1,Baas Pieter2

Affiliation:

1. 1Department of Forest Biomaterials, N.C. State University, Raleigh, NC 27695-8005, N.C. Museum of Natural Resources, Raleigh, NC, U.S.A.

2. 2Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.

Abstract

ABSTRACTWe revisited questions about changes in the incidences of functional wood anatomical traits through geologic time and compared the incidences of these traits in the fossil record with modern wood anatomical diversity patterns in order to test classical (“Baileyan”) and more recent ecophyletic hypotheses of xylem evolution. We contrast patterns through time for tropical and higher (paleo)latitudes. Data are from the InsideWood database. There are striking differences between woods from high and mid latitudes versus tropical (paleo)-latitudes. At temperate and subtropical latitudes (Laurasia and high latitude Gondwana), the epoch by epoch time series supports the Baileyan transformation series of vessel-bearing woody angiosperms (basal woody angiosperms and eudicots): “primitive” features such as scalariform perforations, exclusively solitary vessels, apotracheal diffuse parenchyma and heterocellular rays abound in the Cretaceous and become much less frequent in the Cenozoic, especially post-Eocene. In contrast, in the paleotropics hardly any changes occur in the incidences – each epoch has an equally “modern” spectrum of wood anatomical attributes. Although climatic gradients from the poles to the equator were less steep in the Cretaceous than in the late Cenozoic, the wood anatomical differences between mid-high latitude woods and tropical woods were much more pronounced in the Cretaceous than in later epochs. This seeming paradox is discussed but we cannot resolve it.We suggest that tropical conditions have accelerated xylem evolution towards greater hydraulic efficiency (simple perforations), biological defense and hydraulic repair (elaborate paratracheal parenchyma patterns) as evidenced by late Cretaceous tropical latitude woods having near modern incidences of almost all traits. At higher paleolatitudes of both the Northern and Southern Hemisphere “ancestral” features such as scalariform perforations were retained in cooler and frost-prone regions where they were not selected against in mesic habitats because of lower demands on conductive efficiency, and could even be advantageous in trapping freeze-thaw embolisms. The fossil wood record remains too incomplete for testing hypotheses on the wood anatomy of the earliest angiosperms. The low incidence of so-called “xerophobic” woods sensu Feild with scalariform perforations with numerous (over 40) closely spaced bars in the Cretaceous tropical fossil record is puzzling. At higher paleolatitudes such woods are common in the Cretaceous.Ring porosity, an indicator of seasonal climates and deciduousness, occurs at low levels in the Cretaceous and Paleogene at higher paleolatitudes only, and reaches modern levels in the Miocene. In Neogene and Recent temperate Northern Hemisphere, wide vessels are virtually restricted to ring-porous woods. In the tropics, there is a low incidence of ring porosity throughout all epochs.The fossil record indicates that ecophysiological adaptation to tropical or temperate conditions was already evident in the Cretaceous with considerable latitudinal differences.

Publisher

Brill

Subject

Forestry,Plant Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3