Proof-of-Concept Analysis of a Deep Learning Model to Conduct Automated Segmentation of OCT Images for Macular Hole Volume

Author:

Pereira Austin,Oakley Jonathan D.,Sodhi Simrat K.,Russakoff Daniel B.,Choudhry Netan

Abstract

BACKGROUND AND OBJECTIVE: To determine whether an automated artificial intelligence (AI) model could assess macular hole (MH) volume on swept-source optical coherence tomography (OCT) images. PATIENTS AND METHODS: This was a proof-of-concept consecutive case series. Patients with an idiopathic full-thickness MH undergoing pars plana vitrectomy surgery with 1 year of follow-up were considered for inclusion. MHs were manually graded by a vitreoretinal surgeon from preoperative OCT images to delineate MH volume. This information was used to train a fully three-dimensional convolutional neural network for automatic segmentation. The main outcome was the correlation of manual MH volume to automated volume segmentation. RESULTS: The correlation between manual and automated MH volume was R 2 = 0.94 ( n = 24). Automated MH volume demonstrated a higher correlation to change in visual acuity from preoperative to the postoperative 1-year time point compared with the minimum linear diameter (volume: R 2 = 0.53; minimum linear diameter: R 2 = 0.39). CONCLUSION: MH automated volume segmentation on OCT imaging demonstrated high correlation to manual MH volume measurements. [ Ophthalmic Surg Lasers Imaging Retina . 2022;53(4):208–214.]

Publisher

SLACK, Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3