The use of big data and data mining in the investigation of criminal offences

Author:

Tymchyshyn Andriy1ORCID,Semeniaka Anna2ORCID,Bondar Serhii3ORCID,Akhtyrska Nataliia4ORCID,Kostiuchenko Olena4ORCID

Affiliation:

1. Open International University of Human Development Ukraine, Ivano-Frankivska Branch, Ivano-Frankivsk, Ukraine.

2. Tavria National University named after V. I. Vernadskyi, Kyiv, Ukraine.

3. National Academy of Internal Affairs, Kyiv, Ukraine.

4. Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

Abstract

The aim of this study was to determine the features and prospects of using Big Data and Data Mining in criminal proceedings. The research involved the methods of a systematic approach, descriptive analysis, systematic sampling, formal legal approach and forecasting. The object of using Big Data and Data Mining are various crimes, the common features of which are the seriousness and complexity of the investigation. The common tools of Big Data and Data Mining in crime investigation and crime forecasting as interrelated tasks were identified. The creation of databases is the result of the processing of data sources by Data Mining methods, each being distinguished by the specifics of use. The main risks of implementing Big Data and Data Mining are violations of human rights and freedoms. Improving the use of Big Data and Data Mining requires standardization of procedures with strict adherence to the fundamental ethical, organizational and procedural rules. The use of Big Data and Data Mining is a forensic innovation in the investigation of serious crimes and the creation of an evidence base for criminal justice. The prospects for widespread use of these methods involve the standardization of procedures based on ethical, organizational and procedural principles. It is appropriate to outline these procedures in framework practical recommendations, emphasizing the responsibility of officials in case of violation of the specified principles. The area of further research is the improvement of innovative technologies and legal regulation of their application.

Publisher

Amazonia Investiga

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3