A Parallelly Implemented Hybrid Multi-Objective Efficient Persuasion of Coverage and Redundancy Programming Model for Internet of Things in 5G Networks using Hadoop

Author:

B Ravi Chandra1,Kumar Krishan2

Affiliation:

1. Department of Electronics & Communication Engineering, Lovely professional university, Jalandhar, Phagwara, Punjab 144001 and G.Pullaiah College of Engineering and Technology, Kurnool, 518452, Andhra Pradesh, India.

2. Department of Electronics & Communication Engineering, Lovely professional university, Jalandhar, Phagwara, Punjab, India.

Abstract

In 5G networks, the demand for IoT devices is increasing due to their applications. With the development and widespread adoption of 5G networks, the Internet of Things (IoT) coverage issue will collide with the issue of enormous nodes. In this paper, a parallell y implemented Hybridised Mayfly and Rat Swarm Optimizer algorithm utilising Hadoop is proposed for optimising the IoT coverage and node redundancy in IoT with massive nodes, which automatically lengthens the IoT's lifecycle. Initially, parallel operation d ivides the IoT coverage problem involving massive nodes into numerous smaller problems in order to reduce the problem's scope, which are then solved using parallel Hadoop. Using the flight behaviour and mating process of mayflies, we optimise the coverage problem here. Rats' pursuing and attacking behaviours are employed to optimise the redundancy problem. Then, select the non critical nodes from the critical nodes in an optimal manner. Lastly, parallel operation effectively resolves the IoT's coverage issu e through massive nodes by strategically extending the IoT's lifespan. Using the NS2 application, the proposed method is simulated. Computation Time, Energy efficiency, Lifespan, Lifetime, and Remaining Nodes are analysed as performance metrics. The propos ed MOP Hyb MFRS IoT 5GN method achieves lower computation times of 98.38%, 92.34%, and 97.45%, higher lifetime of 89.34%, 83.12%, and 88.96%, and lower remaining time as 91.25%, 79.90%, and 92.88% compared with existing methods such as parallel genetic alg orithm spread the lifespan of internet of things on 5G networks (MPGA IoT 5GN)

Publisher

Anapub Publications

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Human-Computer Interaction,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photovoltaic System Fault Detection Using Voltage/Current Tracking;2023 Fourth International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3