Predicting Factory Equipment Lifespan Through Manufacturing Data Analysis using AI

Author:

Lee Jae-Hak1,Jeong Young-Han1,Park Jung Kyu2

Affiliation:

1. Department of Aeronautical & Mechanical Engineering, Changshin University, Korea.

2. Department of Computer Engineering, Changshin University, Korea.

Abstract

Recently, research on applying artificial intelligence (AI) to various industries, especially manufacturing, is being actively conducted. In the field of smart factory, the purpose is to improve productivity based on data generated in the process of producing or processing products. The tool breakage during metal product processing causes fatal difficulties of predicting tool life. Moreover, if tool life is not predicted, defects may occur product reliability deteriorate, which may adversely affect product performance or economic aspects. In this paper, data related to machining is collected from CNC equipment in real time, and through machine learning and deep learning, which factors affect the wear of cutting tools are identified and the lifespan of cutting tools is predicted. An AI-based solution was applied to the system, productivity improved due to an increase in tool life.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3