An Improved Algorithm for Extracting Frequent Gradual Patterns

Author:

Kenmogne Edith Belise,Tetakouchom IdrissORCID,Tayou Djamegni Clémentin,Nkambou Roger,Tabueu Fotso Laurent Cabrel

Abstract

Frequent gradual pattern extraction is an important problem in computer science widely studied by the data mining community. Such a pattern reflects a co-variation between attributes of a database. The applications of the extraction of the gradual patterns concern several fields, in particular, biology, finances, health and metrology. The algorithms for extracting these patterns are greedy in terms of memory and computational resources. This clearly poses the problem of improving their performance. This paper proposes a new approach for the extraction of gradual and frequent patterns based on the reduction of candidate generation and processing costs by exploiting frequent itemsets whose size is a power of two to generate all candidates. The analysis of the complexity, in terms of CPU time and memory usage, and the experiments show that the obtained algorithm outperforms the previous ones and confirms the interest of the proposed approach. It is sometimes at least 5 times faster than previous algorithms and requires at most half the memory.

Publisher

Vilnius University Press

Reference32 articles.

1. Prediction of heart diseases using data mining algorithms;Informatica (Slovenia),2023

2. A pattern growth-based sequential pattern mining algorithm called prefixSuffixSpan;EAI Endorsed Transactions on Scalable Information Systems,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3