PPG SİNYALLERİNİN TQWT TABANLI AYRIŞTIRILMASI YOLUYLA KAN BASINCI VE KALP ATIŞ HIZI TAHMİNİ
Author:
KÖKLÜKAYA Fatma Sevde1ORCID, ÖZTÜRK Mahmut2ORCID
Affiliation:
1. İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA 2. ISTANBUL UNIVERSITY-CERRAHPASA
Abstract
Photoplethysmography (PPG) signals are getting more popular and promising for medical applications because of the non-invasive, fast, and simple recording techniques. Using PPG signals for monitoring the blood pressure (BP) and heart rate (HR) levels instead of traditional invasive and cuff-based measurement techniques is possible and continuous tracing of BP and HR levels can be accomplished with high measurement accuracies. These developments are very important and helpful, especially for people suffering from high tension and cardiac problems. In this study, we propose to use Tunable Q-factor Wavelet Transform (TQWT) for decomposing the PPG signals into sub-signals and extracting some statistical features from each of the sub-signals and main signal. Artificial Neural Networks (ANN), Random Forests (RF), and Support Vector Machines (SVM) algorithms are employed to estimate diastolic blood pressure (DBP), systolic blood pressure (SBP), and heart rate (HR) values. PPG signals, DBP, SBP, and HR values which were measured with traditional methods were obtained from the open dataset of Guilin People’s Hospital of China. This dataset includes information of 219 individuals. Each machine learning method was applied to the features separately, and the results of the regression analysis were interpreted by using the error rates and correlations between the actual and estimated values. Results show that the RF algorithm is more successful than ANN and SVM for the estimation of DBP, SBP, and HR levels.
Publisher
Kahramanmaras Sutcu Imam University Journal of Engineering Sciences
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference25 articles.
1. Acharya, U. R., Hagiwara, Y., Koh, J. E.W., Oh, S. L., Tan, J. H., Adam, M., and San Tan, R., (2018), Entropies for automated detection of coronary artery disease using ecg signals: A review, Biocybernetics and Biomedical Engineering, vol. 38, no. 2, pp. 373–384. 2. Al Ghayab, H. R., Li, Y., Siuly, S., and Abdullah, S., (2019) A feature extraction technique based on tunable q-factor wavelet transform for brain signal classification, Journal of neuroscience methods, vol. 312, pp. 43–52,. 3. Allen, J., & Murray, A.,(2003), Age-related changes in peripheral pulse shape characteristics at various body sites, Physiological Meaurement ,24(2), 297–307. 4. Allen, J.,(2007), Plethysmography and its application in clinical physiological Measurement, Physiological Meaurement, 28(3), 1-39. 5. American National Standards Institute (2023). Non-invasive sphygmomanometers - Part 2: clinical investigation of automated measurement type. ANSI/AAMI/ISO 81060–2:2013. http://webstore.ansi.org, Accessed September 26,.
|
|