Design of a Novel Ex Vivo Bioreactor to Investigate the Effect of Pressure Induced Stretch on Aortic Valve Biology

Author:

Arjunon Sivakkumar1,Dinh Anh-thi1,Rathan Swetha1,Ajit Yoganathan Ajit Yoganathan1

Affiliation:

1. 1The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University

Abstract

AbstractA variety of ex vivo bioreactors have been developed to study the mechanobiology of valves and valve substitutes. Especially, bioreactors to mimic the individual mechanical stimuli (stretch, pressure and shear), have been well established. Going forward, it is essential to characterize the structural and biological changes in the aortic valve when subjected to a combination of these stimuli. Especially, since it is expected that a synchronized exposure to combined mechanical stimuli has a significantly different effect than the effect caused by individual stimulus. To this end, a novel bioreactor was designed, fabricated and validated to study the effect of stretch induced by the physiological transvalvular pressure gradient on fresh porcine aortic valve. The ex vivo bioreactor developed in the current study can maintain consistent physiological loading conditions with independent control of the flow rate, pressure and frequency to reproduce clinically relevant mechanical conditions. The design consists of a linear actuator system driving the culture media through the valve at a prescribed flow rate. The pressure levels on either side of the valve can be controlled by using a compliance chamber on the aortic side which is connected to a compressed air circuit. The linear drive system has a piston arrangement at its end, and drives the media in a rigid cylindrical ventricle section. The media returns to the ventricular side though a compliant channel during the reverse motion of the linear actuator. The entire setup is placed inside an incubator maintained at 370 C and 5% CO2. The flow and pressure variations were observed to be physiologically accurate and consistent over the time period of the experiment. Other salient features include low volume of the entire setup, and replaceable valve mounting mechanism to accommodate different sized valves. To ensure that the valve cells are healthy and native phenotype is maintained in the bioreactor, porcine aortic valves were mounted to the stents and subjected to normal physiological conditions of 80/120mmHg pressure, 5 LPM flow rate of Dulbecco’s modified eagle media(DMEM). The entire setup was placed inside an incubator. After 48 hours of culture, Movat Pentachrome stain was done to observe the tissue morphology, and DAPI stain was done to assess the cell viability. Fresh porcine AV leaflets were used as controls. The results were comparable to fresh controls, and indicated that the bioreactor is capable of preserving leaflet morphology and cell viability when cultured under normal physiological conditions for 48 hours.

Publisher

Hamad bin Khalifa University Press (HBKU Press)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aortic Valve: Mechanical Environment and Mechanobiology;Annals of Biomedical Engineering;2013-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3