Phosphorus in zero tension soil solution as influenced by long-term fertilization of corn (Zea mays L.)

Author:

Zhang T. Q.,MacKenzie A. F.

Abstract

Phosphorus from fertilized agricultural land may contribute to ground or surface water inputs and accelerate eutrophication. With increases in soil P saturation and organic P in long-term fertilized soils, soil P leaching losses may increase. The effect of long-term P fertilization (6 to 11 yr) on inorganic and organic P in soil solutions at zero tension was studied on two soils, a Chicot sandy clay loam (Grey Brown Luvisol) and a Ste. Rosalie clay (Humic Gleysol). Soil solution samples were collected using a cylinder technique and analyzed for total dissolved P (TDP), dissolved inorganic P (DIP), and dissolved organic P (DOP). Levels for DIP ranged from 0.15 to 1.01 mg P L−1 and TDP ranged from 0.33 to 1.19 mg P L−1 in the Chicot soil. In the Ste. Rosalie soil, values of DIP ranged from 0.04 to 0.23 mg P L−1 and TDP ranged from 0.15 to 0.36 mg P L−1. Increasing fertilizer P applications from 44 kg ha−1 to 132 kg ha−1 increased DIP and TDP in soil solutions in both soils. There was no effect of P fertilization rate on DOP values. Soil P movement below 45 cm during the non-growing season was estimated at 633 to 2732 g ha−1 yr−1 in the Chicot soil and from 312 to 974 g ha−1 yr−1 in the Ste. Rosalie soil. Soil solution DIP was found to be linearly related to soil P extractable with 0.5 M NaHCO3, but levels of NaHCO3-extractable P required to produce 0.05 mg P L−1 DIP varied with soil, ranging from 70 to 110 mg P kg−1 soil. The critical level of extractable P has to be considered in association with soil type to predict potential water contamination. Key words: Continuous corn, long-term fertilization, soil solution, dissolved inorganic and organic P, NaHCO3 extractable P

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3