Greenhouse production of Echinacea purpurea (L.) and E. angustifolia using different growing media, NO3−/NH4+ ratios and watering regimes

Author:

Zheng Youbin,Dixon Mike,Saxena Praveen

Abstract

Current field cultivation and wild-harvest methods for the medicinal plant Echinacea are struggling to meet the requirements for a high-quality, uniformly produced crop for human consumption. To help meet this challenge, the potential of using a greenhouse production system for Echinacea production was explored. Echinacea purpurea (L.) Moench and angustifolia DC. var. angustifolia plants were grown in three types of greenhouse production systems: (1) deep flow solution culture (D), (2) pots with either Pro-Mix (P) or (3) sand (S). Plants were irrigated with one of three nutrient solutions containing NO3/NH4+ ratios of 7:1, 5:1 or 3:1, respectively. The plants grown in the Pro-Mix and the sand systems were either well-watered or subjected to periodical water stress. The results obtained after 12 wk of growth showed that Echinacea root production in the greenhouse systems was comparable with or better than that in the field. Based on root and total biomass production, the Pro-Mix system was the best production system for both E. angustifolia and E. purpurea. In most cases, the NO3/NH4+ ratio did not have significant effects on the growth of either species. When effects were seen, however, higher NO3/NH4+ levels generally resulted in greater leaf area, root and total biomass, and a higher root/shoot ratio. Mild periodic water stress did not affect the root/shoot ratio or the root biomass in either species. The application of a periodic water stress reduced leaf area of both species, but a reduction in total biomass was only observed in E. purpurea. Key words: Echinacea, greenhouse production, hydroponic production, medicinal plant, NO3/NH4+ ratio, water stress

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3