Attenuation of cadmium, fluoride and uranium in phosphogypsum process water by calcareous soil

Author:

Poulsen L.,Dudas M. J.

Abstract

Concerns about contaminant migration from phosphogypsum (PG) repositories prompted the present study. A sequential batch procedure, in which acidic process water (PW) from a phosphate fertilizer plant was reacted with samples of a calcareous till, was employed to determine the attenuation of environmentally sensitive elements by reaction with typical subsoils at PG waste repositories. PW leachates were monitored for total soluble fluoride (F) and pH during the experiment. Soil samples were analyzed for pH, F, cadmium (Cd), uranium (U), and calcium carbonate (CaCO3) equivalent at the end of the study. Leachate pH increased from <2 to 5.5 where it stabilized; soil pH stabilized at 6.5. Fluoride solution concentrations were reduced within regulatory limits. Soils accumulated Cd, F, and U in excess of background concentrations (up to 99 ×, 83 ×, and 12.5 ×, respectively). Soil carbonates persisted after leachate was buffered near pH 4.5, and played a major role in Cd attenuation. The results of this laboratory analog of a PW leaching gradient suggest contamination of groundwater is unlikely but accumulation of toxic elements in soil is an issue that may require consideration in the long-term decommissioning of PG waste repositories. Key words: Attenuation, cadmium, fluoride, leachate, phosphogypsum, uranium, waste management

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3