CORN YIELD RESPONSE TO IRRIGATION, PLANT POPULATION AND NITROGEN IN A COOL, HUMID CLIMATE

Author:

BROWN D. M.

Abstract

Summer dry spells in some areas of southern Ontario during the last decade have increased interest in supplemental irrigation. Field studies were conducted in a 2500 heat unit area of southern Ontario on Orthic/Brunisolic Grey Brown Luvisol soils to determine the yield response of field corn (Zea mays L.) to irrigation in midsummer when combined with increased plant density and N rates. The yield responses, phenological records and soil moisture measurements are to be used in the calibration and validation of a corn yield estimation model, to be published in a subsequent paper. Two to four irrigations were applied each year using the line method when soil moisture pressure potential reached −40 to −60 kPa at 22.5 cm depth. Development stages were unaffected by irrigation. Yield increases from irrigation were directly proportional to water applied in midsummer and the intensity of dry weather. Yields increased with plant density in 4 of the 5 yr and were usually consistent over irrigation levels. Additional nitrogen above the recommended rate increased yields in 1982 and 1983, decreased yields in 1981, and resulted in no differences the other two years. In years of positive response to extra nitrogen, there was usually a greater response with irrigation and the responses were greatest at high plant density and for the longer season hybrids. Harvest indices decreased as irrigation amount increased and were exceptionally high in 1983.Key words: Corn, Zea mays L., line-source irrigation, plant population, nitrogen, harvest index

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3