Sowing date affects yield components of canarygrass seed

Author:

Bodega J. L.,De Dios M. A.,Pereyra Iraola M. M.

Abstract

Canarygrass (Phalaris canariensis L.) crops are sown from June to mid-September in the southeastern area of the province of Buenos Aires, Argentina. Sowing dates in this range result in different growing temperatures and photoperiods that affect the duration of developmental stages, biomass production, and seed yield and its components. For Argentina, there are no reported studies that address these effects. This study on the effects of sowing date was conducted during four growing seasons (1996–1999) at the Instituto Nacional de Tecnologí a Agropecuaria (INTA) Experimental Station at Balcarce, Argentina, using a population provided by Dr. Jaime Lloveras, University of Leyda, Spain. Different seeding dates were chosen from June to mid-September. The experiment was a randomized complete block design with four blocks. When the sowing date was delayed, total dry matter (DM) decreased. For early sowing dates seed yield was constant, but after 10 August it was reduced by 1.5% for each day of delay. Earlier sowing increased the duration of pre-anthesis development with greater uniformity in panicle size and the number of seeds. Seed yield was related lin early to the number of seeds and plant dry matter yield (DMY). The rate of progress from emergence to anthesis (1/days from emergence to anthesis) was proportional to the mean photoperiod. Under the environmental conditions in Balcarce, the accumulated required thermal units for anthesis was reduced when sowing was delayed from June to September. This reduction was related to the photoperiod and was estimated as –189.3 growing degree-days per hour of photoperiod increment. Key words: Canarygrass, seed yield, sowing date, yield components

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3