Author:
Al Majou Hassan,Bruand Ary,Duval Odile
Abstract
Most pedotransfer functions (PTF) developed over the past three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite the high number of PTFs published, most being class- or continuous-PTFs, the accuracy of prediction remains limited. In this study, we compared the performance of different class- and continuous-PTFs developed with a regional database. Results showed that the use of in situ volumetric water content at field capacity as a predictor led to much better estimation of water retention properties compared with using predictors derived from the texture, or the organic carbon content and bulk density. This was true regardless of the complexity of the PTFs developed. Results also showed that the best prediction quality was achieved by using the in situ volumetric water content at field capacity after stratification by texture. Comparison of in situ volumetric water content at field capacity, with the water retained at different matric potentials as measured in the laboratory, showed field capacity to approximate 100 hPa, whatever the soil texture. Finally, the lack accuracy of PTFs that do not use the in situ volumetric water content at field capacity as predictor did not appear due to the test soils being unrepresentative of the soils used to develop the PTFs, but were instead related to poor correlations between the predictors used and the water retention properties. Key words: Pedotransfer functions, root mean square error, mean error of prediction, standard deviation of prediction, texture, bulk density, organic carbon content
Publisher
Canadian Science Publishing
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献