The use of 15N-enriched feed to label pig excreta for N cycling studies

Author:

Chantigny Martin H.,Angers Denis A.,Pomar Candido,Morvan Thierry

Abstract

Isotopic labelling can help improve our knowledge of the fate of manure N in agroecosystems. Our objective was to investigate the labelling dynamics of excreta N by feeding a pig with a 15N-enriched diet (2.808 atom % 15N) and to establish the implications of using the labelled excreta for N cycling studies. Pig urine and feces were collected and pooled each day for 20 d following the start of 15N-feeding. Each of the 20 excreta samples were analyzed for pH, dry matter content, C and N contents, and 15N distribution between the mineral and organic N pools. Sub-samples of each excreta sample were incubated for 84 d, and the 15N abundance of N mineralized after 7, 21 and 84 d of incubation was determined. The 15N concentration in pig excreta increased sharply during the first 3 d of 15N-feeding and slowly thereafter. The 15N concentration in excreta decreased rapidly when an unlabelled feed was served after 12 d of 15N-feeding. On the first day and after 9 d of 15N-feeding, the mineral and the organic N pools of the collected excreta had similar 15N content. However, from day 2 to 9 of 15N-feeding, the 15N abundance of excreta mineral N was 0.1 to 0.3 atom % lower than in the organic N pool. During incubation of the excreta samples, the 15N content of the mineralized N was 0.1 to 0.4 atom % lower after 84 d than after 21 d of incubation, indicating a heterogeneous distribution of 15N between the rapidly and the slowly mineralizable N pools of pig excreta. Despite some heterogeneity, the measured differences in 15N enrichment among the various excreta N pools were generally less than 15% for the first 9 d of 15N-feeding, and less than 5% afterwards. The labelled excreta were thus considered appropriate for short-term studies on the fate of manure N in the soil-plant system, especially for excreta collected after 9 d of 15N-feeding. Key words: 15N labelling, animal feeding, swine manure, pig slurry

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3