Assessment of nitrate adsorption in soils by extraction, equilibration and column-leaching methods

Author:

Kowalenko C. G.,Yu S.

Abstract

The possibility of nitrate adsorption in 18 samples representing 11 soil types from the lower Fraser Valley of British Columbia was examined by differential extraction, equilibration and column leaching methods. Contrary to what was expected if nitrate was adsorbed by the soil, more nitrate was extracted by water than by 2 M KCl from some of the samples. Observations in related studies of greater microbial growth in 0.1 and 1.0 than in 2.0 M KCl extracts after more than 1 wk of storage and of different equilibrium results when conducted with and without toluene supported the conclusion that microbial or enzyme activity caused the larger amount of nitrate to be extracted by water than by 2 M KCl. Both equilibration and column leaching methods measured adsorption in some of the soil samples, but the amounts in the various samples by the two methods were not always the same. The equilibration method was analytically more precise than the column leaching method because it was simpler and required fewer measurements, but the column leaching method was considered to match more closely the soil to water ratio that would occur in the field. The equilibrium method found from 0 to 34% adsorption of the nitrate when added at a concentration not exceeding 50 μg N g−1. Further work is required to develop a practical method to meaningfully quantify nitrate adsorption in soils. The presence of nitrate adsorption has important implications for the interpretation of soil nitrogen research data and should possibly be included in nitrogen simulation models. The observation of microbial or enzyme effects on extraction of nitrate from soil shows the importance of using extraction solutions (e.g., those of high salt concentration or that contain a microbial inhibitor) that eliminate that possibility. Key words: Nitrate reactions, anion adsorption, nitrogen process, microbial effect, microbial inhibition

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3