Effects of limestone applications on soil pH and extractable elements in a cauliflower field study

Author:

Kowalenko C.G.,Ihnat M.

Abstract

The pH and Mehlich-3 extractable concentrations of a variety of elements including those that were study treatments (Ca, Mn and Zn) and those that were expected to be influenced by the treatments (Mg, Sr, K, Rb, Na, Al, Fe, Si and Cu) were determined in soil samples from a cauliflower field trial conducted between 1979 and 1985. The treatments were limestone applied to the soil at three rates (0, 9 and 19 Mg ha-1) and Zn and Mn foliar applications. The pH of air-dried samples varied only slightly when analysed within each year of sampling versus as one batch after the trial was completed, which showed that the samples were stable over the long time the samples had to be stored through the field trial period and until the samples were analysed. Being able to do all the analyses in one batch also facilitated the application of quality control to ensure comparability of results. There were differences in the soil measurements of most of the elements taken pre-plant versus post-harvest, showing that the time of sampling must be consistent for experimental and soil test interpretations. Post-harvest samples (i.e., focusing on residual effects of limestone application) were selected to examine the treatment effects. Limestone application had wide-ranging and variable effects on extractable elements in the soil. Soil pH and extractable Ca increased with increased limestone rate as expected, while the amount of extractable Mn, Zn, K, Mg, Na, Al and Fe decreased. Extractable Sr, Si and Cu increased with limestone applications. Extractable Ca, Zn, Mg, Al and Si were affected to 15-30 cm depth, and pH and extractable Mn, Rb and Fe were affected to 30-60 cm. Subsurface (>15 cm depth) Sr, K, Na and Cu were not influenced by the limestone treatments. The effect of limestone on the elements tended to correspond to the effect previously observed on the contents of these elements in cauliflower plants. The ability of Mehlich-3 extract solution to reflect the availability of elements to plants and the effect of limestone applications on other elements simultaneously showed the potential for this soil test solution to predict the need for nutrient amendments to prevent lime-induced deficiencies.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3