Optimization of the Wire Electric Discharge Machining Process of Nitinol-60 Shape Memory Alloy Using Taguchi-Pareto Design of Experiments, Grey-Wolf Analysis, and Desirability Function Analysis

Author:

Adedeji Wasiu Oyediran,Adeniran Mofoluwaso Kehinde,Adedeji Kasali Aderinmoye,Rajan John,Oke Sunday AyoolaORCID,Oyetunji Elkanah Olaosebikan

Abstract

The nitinol-60 shape memory alloy has been rated as the most widely utilized material in real-life industrial applications, including biomedical appliances, coupling and sealing elements, and activators, among others. However, less is known about its optimization characteristics while taking advantage to choose the best parameter in a surface integrity analysis using the wire EDM process. In this research, the authors proposed a robust Taguchi-Pareto (TP)-grey wolf optimization (GWO)-desirability function analysis (DFA) scheme that hybridizes the TP method, GWO approach, and DFA method. The point of coupling of the TP method to the GWO is the introduction of the discriminated signal-to-noise ratios contained in the selected 80-20 Pareto rule of the TP method into the objective function of the GWO, which was converted from multiple responses to a single response accommodated by the GWO. The comparative results of five outputs of the wire EDM process before and after optimization reveals the following understanding. For the CR, a gain of 398% was observed whereas for the outputs named Rz, Rt, SCD, and RLT, losses of 0.0996, 0.0875, 0.0821, and 0.0332 were recorded. This discrimination of signal-to-noise ratio based on the 80-20 rule makes the research different from previous studies, restricting the data fed into the GWO scheme to the most essential to accomplishing the TP-GWO-DFA scheme proposed. The use of the TP-GWO-DFA method is efficient given the limited volume of data required to optimize the wire EDM process parameters of nitinol.

Publisher

Universitas Mercu Buana

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3