ShoppingTotal: A Mobile Application Utilizing Assisted Rekognition Algorithm for Intelligent Price Detection from Shelf Label Images

Author:

Can Zuhal1ORCID

Affiliation:

1. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

Abstract

ShoppingTotal is a mobile application for monitoring the shopping budget through shelf label images. Using the ShoppingTotal application, shoppers capture the shelf label image of the product to obtain the product information and view the total amount of the current shopping and the history of the previous shopping lists. For the ShoppingTotal application, the Assisted Rekognition algorithm is developed based on Amazon Rekognition’s text detection service for extracting product information from label images. The FourGroceries dataset is collected for evaluating the performance of the Assisted Rekognition algorithm over original, single-filtered, and multifiltered images based on the image filters under the categories of sharpness, blurriness, brightness, temperature, and color. According to experiments on the FourGroceries dataset and the Amazon Rekognition service, the average price detection confidence results are 76.49% with the Assisted Rekognition algorithm and 20.94% without the Assisted Rekognition algorithm. The Assisted Rekognition algorithm’s performance is found to be better on filtered images than on original images, with 89.25% price detection confidence. By applying appropriate single or multiple image filters on the FourGroceries dataset, the Assisted Rekognition algorithm achieves extracting the correct price values from all experimental dataset images.

Publisher

Journal of Information and Communication Technologies

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3