Abstract
BackgroundTracheostomies in children are associated with significant morbidity, poor quality of life, excess healthcare costs and excess mortality. The underlying mechanisms facilitating adverse respiratory outcomes in tracheostomised children are poorly understood. We aimed to characterise airway host defence in tracheostomised children using serial molecular analyses.MethodsTracheal aspirates, tracheal cytology brushings and nasal swabs were prospectively collected from children with a tracheostomy and controls. Transcriptomic, proteomic and metabolomic methods were applied to characterise the impact of tracheostomy on host immune response and the airway microbiome.ResultsChildren followed up serially from the time of tracheostomy up to 3 months postprocedure (n=9) were studied. A further cohort of children with a long-term tracheostomy were also enrolled (n=24). Controls (n=13) comprised children without a tracheostomy undergoing bronchoscopy. Long-term tracheostomy was associated with airway neutrophilic inflammation, superoxide production and evidence of proteolysis when compared with controls. Reduced airway microbial diversity was established pre-tracheostomy and sustained thereafter.ConclusionsLong-term childhood tracheostomy is associated with a inflammatory tracheal phenotype characterised by neutrophilic inflammation and the ongoing presence of potential respiratory pathogens. These findings suggest neutrophil recruitment and activation as potential exploratory targets in seeking to prevent recurrent airway complications in this vulnerable group of patients.
Funder
Barbour Foundation
Academy of Medical Sciences
SHIELD consortium
Newcastle University Wellcome Trust Institutional Strategic Support Fund
Newcastle Hospitals Charity
Subject
Pulmonary and Respiratory Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献