Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke

Author:

Balint B,Donnelly L E,Hanazawa T,Kharitonov S A,Barnes P J

Abstract

BACKGROUNDCigarette smoking reduces the level of exhaled nitric oxide (NO) in healthy subjects, although the mechanism is unclear. NO is a highly reactive molecule which can be oxidised or complexed with other biomolecules, depending on the microenvironment. The stable oxidation end products of NO metabolism are nitrite and nitrate. This study investigated the effect of smoking on NO metabolites in exhaled breath condensate.METHODSFifteen healthy current smokers were recruited together with 14 healthy non-smokers. Measurement of exhaled NO, lung function, and collection of exhaled breath condensate were performed. Nitrite, nitrite + nitrate, S-nitrosothiols, and nitrotyrosine levels were measured. The effect of inhaling two cigarettes in smokers was also evaluated. The mean level of exhaled NO in smokers was significantly lower than in non-smokers (4.3 (0.3) ppb v 5.5 (0.5) ppb, p<0.05).RESULTSThere was no difference in the levels of nitrite, nitrite + nitrate, S-nitrosothiols, and nitrotyrosine in the exhaled breath condensate at the baseline visit between smokers and non-smokers. After smoking, nitrite + nitrate levels were significantly but transiently increased (from 20.2 (2.8) μM to 29.8 (3.4) μM, p<0.05). There was no significant change in the levels of exhaled NO, nitrite, S-nitrosothiols, or nitrotyrosine 30 and 90 minutes after smoking.CONCLUSIONSThese findings suggest that acute smoking can increase the level of nitrate, but not nitrite, S-nitrosothiols, or nitrotyrosine in breath condensate. The deleterious effect of oxidant radicals induced by smoking may contribute to the epithelial damage of airways seen in smokers.

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3