Reductions in inhaler greenhouse gas emissions by addressing care gaps in asthma and chronic obstructive pulmonary disease: an analysis

Author:

Gagné MyriamORCID,Karanikas AlikiORCID,Green Samantha,Gupta Samir

Abstract

IntroductionClimate change from greenhouse gas (GHG) emissions represents one of the greatest public health threats of our time. Inhalers (and particularly metred-dose inhalers (MDIs)) used for asthma and chronic obstructive pulmonary disease (COPD), constitute an important source of GHGs. In this analysis, we aimed to estimate the carbon footprint impact of improving three distinct aspects of respiratory care that drive avoidable inhaler use in Canada.MethodsWe used published data to estimate the prevalence of misdiagnosed disease, existing inhaler use patterns, medication class distributions, inhaler type distributions and GHGs associated with inhaler actuations, to quantify annual GHG emissions in Canada: (1) attributable to asthma and COPD misdiagnosis; (2) attributable to overuse of rescue inhalers due to suboptimally controlled symptoms; and (3) avoidable by switching 25% of patients with existing asthma and COPD to an otherwise comparable therapeutic option with a lower GHG footprint.ResultsWe identified the following avoidable annual GHG emissions: (1) ~49 100 GHG metric tons (MTs) due to misdiagnosed disease; (2) ~143 000 GHG MTs due to suboptimal symptom control; and (3) ~262 100 GHG MTs due to preferential prescription of strategies featuring MDIs over lower-GHG-emitting options (when 25% of patients are switched to lower GHG alternatives). Combined, the GHG emission reductions from bridging these gaps would be the equivalent to taking ~101 100 vehicles off the roads each year.ConclusionsOur analysis shows that the carbon savings from addressing misdiagnosis and suboptimal disease control are comparable to those achievable by switching one in four patients to lower GHG-emitting therapeutic strategies. Behaviour change strategies required to achieve and sustain delivery of evidence-based real-world care are complex, but the added identified incentive of carbon footprint reduction may in itself prove to be a powerful motivator for change among providers and patients. This additional benefit can be leveraged in future behaviour change interventions.

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3