Immune modulation by chronic exposure to waterpipe smoke and immediate-early gene regulation in murine lungs

Author:

Reyes-Caballero HermesORCID,Park BongsooORCID,Loube JeffreyORCID,Sanchez IanORCID,Vinayachandran VineshORCID,Choi YoungshimORCID,Woo JuhyungORCID,Edwards Justin,Brinkman Marielle CORCID,Sussan ThomasORCID,Mitzner WayneORCID,Biswal ShyamORCID

Abstract

ObjectiveWe investigated the effects of chronic waterpipe (WP) smoke on pulmonary function and immune response in a murine model using a research-grade WP and the effects of acute exposure on the regulation of immediate-early genes (IEGs).MethodsWP smoke was generated using three WP smoke puffing regimens based on the Beirut regimen. WP smoke samples generated under these puffing regimens were quantified for nicotine concentration. Mice were chronically exposed for 6 months followed by assessment of pulmonary function and airway inflammation. Transcriptomic analysis using RNAseq was conducted after acute exposure to characterise the IEG response. These biomarkers were then compared with those generated after exposure to dry smoke (without water added to the WP bowl).ResultsWe determined that nicotine composition in WP smoke ranged from 0.4 to 2.5 mg per puffing session. The lung immune response was sensitive to the incremental severity of chronic exposure, with modest decreases in airway inflammatory cells and chemokine levels compared with air-exposed controls. Pulmonary function was unmodified by chronic WP exposure. Acute WP exposure was found to activate the immune response and identified known and novel IEG as potential biomarkers of WP exposure.ConclusionChronic exposure to WP smoke leads to immune suppression without significant changes to pulmonary function. Transcriptomic analysis of the lung after acute exposure to WP smoke showed activation of the immune response and revealed IEGs that are common to WP and dry smoke, as well as pools of IEGs unique to each exposure, identifying potential biomarkers specific to WP exposure.

Funder

National Institutes of Health

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3