Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets

Author:

Xu Wenyao,Yu HuiORCID,Chen Dian,Pan Weikang,Yang Weili,Miao Jing,Jia Wanying,Zheng Baijun,Liu Yong,Chen Xinlin,Gao Ya,Tian DonghaoORCID

Abstract

ObjectiveHirschsprung disease (HSCR) is one of the common neurocristopathies in children, which is associated with at least 20 genes and involves a complex regulatory mechanism. Transcriptional regulatory network (TRN) has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR. This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR.MethodsBased on three microarray datasets from the Gene Expression Omnibus database, the multiMiR package was used to investigate the microRNA (miRNA)–target interactions, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we collected transcription factors (TFs) from the TransmiR database to construct the TF–miRNA–mRNA regulatory network and used cytoHubba to identify the key modules. Finally, the receiver operating characteristic (ROC) curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method.ResultsWe identified 58 hub differentially expressed microRNAs (DEMis) and 16 differentially expressed mRNAs (DEMs). The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms, including neurogenesis, cell–substrate adhesion, PI3K–Akt, Ras/mitogen-activated protein kinase and Rho/ROCK signaling. Moreover, 2 TFs (TP53andTWIST1), 4 miRNAs (has-miR-107,has-miR-10b-5p,has-miR-659-3p, andhas-miR-371a-5p), and 4 mRNAs (PIM3,CHUK,F2RL1, andCA1) were identified to construct the TF–miRNA–mRNA regulatory network. ROC analysis revealed a strong diagnostic value of the key TRN regulons (all area under the curve values were more than 0.8).ConclusionThis study suggests a potential role of the TF–miRNA–mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.

Funder

Shaanxi Science and Technology Department

Xi'an Jiaotong University

National Natural Science Foundation of China

Publisher

BMJ

Subject

Pediatrics, Perinatology and Child Health,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3