Association of ambient pollution with inhaler use among patients with COPD: a panel study

Author:

Magzamen SherylORCID,Oron Assaf P,Locke Emily R,Fan Vincent S

Abstract

BackgroundStudies have linked ambient air pollution to chronic obstructive pulmonary disease (COPD) healthcare encounters. However, the association between air quality and rescue medication use is unknown.ObjectivesWe assessed the role of air pollution exposure for increased short-acting beta-2-agonist (SABA) use in patients with COPD through use of remote monitoring technology.MethodsParticipants received a portable electronic inhaler sensor to record the date, time and location for SABA use over a 3-month period. Ambient air pollution data and meteorological data were collected from a centrally located federal monitoring station. Mixed-effects Poisson regression was used to examine the association of daily inhaler use with pollutant levels. Four criteria pollutants (PM2.5, PM10, O3 and NO2), two particulate matter species (elemental carbon (EC) and organic carbon), estimated coarse fraction of PM10 (PM10–2.5) and four multipollutant air quality measures were each examined separately, adjusting for covariates that passed a false discovery rate (FDR) screening.ResultsWe enrolled 35 patients with COPD (94.3% male and mean age: 66.5±8.5) with a mean forced expiratory volume in 1 s (FEV1) % predicted of 44.9+17.2. Participants had a median of 92 observation days (range 52–109). Participants’ average SABA inhaler use ranged from 0.4 to 13.1 puffs/day (median 2.8). Controlling for supplemental oxygen use, long-acting anticholinergic use, modified Medical Research Council Dyspnoea Scale and influenza season, an IQR increase in PM10 concentration (8.0 µg/m3) was associated with a 6.6% increase in daily puffs (95% CI 3.5% to 9.9%; FDR <0.001). NO2 and EC concentration were also significantly associated with inhaler use (3.9% and 2.9% per IQR increase, respectively).ConclusionsExposure to increased ambient air pollution were associated with a significant increase in SABA use for patients with COPD residing in a low-pollution area.

Funder

Colorado School of Public Health Faculty Pilot Grant Program

Health Services Research and Development

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3