3D printed ascending aortic simulators with physiological fidelity for surgical simulation

Author:

Alakhtar AliORCID,Emmott Alexander,Hart Cornelius,Mongrain Rosaire,Leask Richard L,Lachapelle Kevin

Abstract

IntroductionThree-dimensional (3D) printed multimaterial ascending aortic simulators were created to evaluate the ability of polyjet technology to replicate the distensibility of human aortic tissue when perfused at physiological pressures.MethodsSimulators were developed by computer-aided design and 3D printed with a Connex3 Objet500 printer. Two geometries were compared (straight tube and idealised aortic aneurysm) with two different material variants (TangoPlus pure elastic and TangoPlus with VeroWhite embedded fibres). Under physiological pressure, β Stiffness Index was calculated comparing stiffness between our simulators and human ascending aortas. The simulators’ material properties were verified by tensile testing to measure the stiffness and energy loss of the printed geometries and composition.ResultsThe simulators’ geometry had no effect on measured β Stiffness Index (p>0.05); however, β Stiffness Index increased significantly in both geometries with the addition of embedded fibres (p<0.001). The simulators with rigid embedded fibres were significantly stiffer than average patient values (41.8±17.0, p<0.001); however, exhibited values that overlapped with the top quartile range of human tissue data suggesting embedding fibres can help replicate pathological human aortic tissue. Biaxial tensile testing showed that fiber-embedded models had significantly higher stiffness and energy loss as compared with models with only elastic material for both tubular and aneurysmal geometries (stiffness: p<0.001; energy loss: p<0.001). The geometry of the aortic simulator did not statistically affect the tensile tested stiffness or energy loss (stiffness: p=0.221; energy loss: p=0.713).ConclusionWe developed dynamic ultrasound-compatible aortic simulators capable of reproducing distensibility of real aortas under physiological pressures. Using 3D printed composites, we are able to tune the stiffness of our simulators which allows us to better represent the stiffness variation seen in human tissue. These models are a step towards achieving better simulator fidelity and have the potential to be effective tools for surgical training.

Publisher

BMJ

Subject

Health Informatics,Education,Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3