Abstract
ObjectiveTo investigate in situ decellularization of a large animal model of saccular aneurysm as a strategy for achieving aneurysmal growth and lasting inflammation.Methods18 New Zealand White rabbits were randomized 2:1 to receive endoluminal sodium dodecyl sulfate infusion (SDS, 1% solution, 45 min) following elastase or elastase-only treatment (control). All aneurysms were measured by digital subtraction angiography every 2 weeks. Every 2 weeks, three of the rabbits (two elastase + SDS, one control) underwent MRI, followed by contrast injection with myeloperoxidase (MPO)-sensing contrast agent. MRI was repeated 3 hours after contrast injection and the enhancement ratio (ER) was calculated. Following MRI, aneurysms were explanted and subjected to immunohistopathology.ResultsDuring follow-up MRI, the average ER for SDS-treated animals was 1.63±0.20, compared with 1.01±0.06 for controls (p<0.001). The width of SDS-treated aneurysms increased significantly in comparison with the elastase aneurysms (47% vs 20%, p<0.001). Image analysis of thin sections showed infiltration of MPO-positive cells in decellularized aneurysms and surroundings through the 12-week observation period while control tissue had 5–6 times fewer cells present 2 weeks after aneurysm creation. Immunohistochemistry demonstrated the presence of MPO-positive cells surrounding decellularized lesions at early time points. MPO-positive cells were found in the adventitia and in the thrombi adherent to the aneurysm wall at later time points.ConclusionsIn situ decellularization of a large animal model of saccular aneurysms reproduces features of unstable aneurysms, such as chronic inflammation (up to 12 weeks) and active aneurysm wall remodeling, leading to continued growth over 8 weeks.
Funder
Center for Scientific Review
National Institute of Neurological Disorders and Stroke
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献