Author:
Jin Hailan,Geng Jiewen,Yin Yin,Hu Minghui,Yang Guangming,Xiang Sishi,Zhai Xiaodong,Ji Zhe,Fan Xinxin,Hu Peng,He Chuan,Qin Lan,Zhang Hongqi
Abstract
BackgroundIntracranial aneurysms (IAs) are common in the population and may cause death.ObjectiveTo develop a new fully automated detection and segmentation deep neural network based framework to assist neurologists in evaluating and contouring intracranial aneurysms from 2D+time digital subtraction angiography (DSA) sequences during diagnosis.MethodsThe network structure is based on a general U-shaped design for medical image segmentation and detection. The network includes a fully convolutional technique to detect aneurysms in high-resolution DSA frames. In addition, a bidirectional convolutional long short-term memory module is introduced at each level of the network to capture the change in contrast medium flow across the 2D DSA frames. The resulting network incorporates both spatial and temporal information from DSA sequences and can be trained end-to-end. Furthermore, deep supervision was implemented to help the network converge. The proposed network structure was trained with 2269 DSA sequences from 347 patients with IAs. After that, the system was evaluated on a blind test set with 947 DSA sequences from 146 patients.ResultsOf the 354 aneurysms, 316 (89.3%) were successfully detected, corresponding to a patient level sensitivity of 97.7% at an average false positive number of 3.77 per sequence. The system runs for less than one second per sequence with an average dice coefficient score of 0.533.ConclusionsThis deep neural network assists in successfully detecting and segmenting aneurysms from 2D DSA sequences, and can be used in clinical practice.
Funder
the National Key Research Development Program
National Natural Science Foundation of China
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献