From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment

Author:

Brinjikji Waleed,Ding Yong H,Kallmes David F,Kadirvel Ramanathan

Abstract

Preclinical studies are important in helping practitioners and device developers improve techniques and tools for endovascular treatment of intracranial aneurysms. Thus an understanding of the major animal models used in such studies is important. The New Zealand rabbit elastase induced arterial aneurysm of the common carotid artery is one of the most commonly used models in testing the safety and efficacy of new endovascular devices. In this review we discuss: (1) the various techniques used to create the aneurysm, (2) complications of aneurysm creation, (3) natural history of the arterial aneurysm, (4) histopathologic and hemodynamic features of the aneurysm, (5) devices tested using this model, and (6) weaknesses of the model. We demonstrate how preclinical studies using this model are applied in the treatment of intracranial aneurysms in humans. The model has similar hemodynamic, morphological, and histologic characteristics to human aneurysms, and demonstrates similar healing responses to coiling as human aneurysms. Despite these strengths, however, the model does have many weaknesses, including the fact that the model does not emulate the complex inflammatory processes affecting growing and ruptured aneurysms. Furthermore, the extracranial location of the model affects its ability to be used in preclinical safety assessments of new devices. We conclude that the rabbit elastase model has characteristics that make it a simple and effective model for preclinical studies on the endovascular treatment of intracranial aneurysms, but further work is needed to develop aneurysm models that simulate the histopathologic and morphologic characteristics of growing and ruptured aneurysms.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3