Author:
Merritt William,Holter Anne Marie,Beahm Sharna,Gonzalez Connor,Becker Timothy A,Tabor Aaron,Ducruet Andrew F,Bonsmann Laura S,Cotter Trevor R,Frenklakh Sergey
Abstract
BackgroundUntreated ischemic stroke can lead to severe morbidity and death, and as such, there are numerous endovascular blood-clot removal (thrombectomy) devices approved for human use. Human thrombi types are highly variable and are typically classified in qualitative terms – ‘soft/red,’ ‘hard/white,’ or ‘aged/calcified.’ Quantifying human thrombus properties can accelerate the development of thrombus analogs for the study of thrombectomy outcomes, which are often inconsistent among treated patients.Methods‘Soft’human thrombi were created from blood samples ex vivo (ie, human blood clotted in sample vials) and tested for mechanical properties using a hybrid rheometer material testing system. Synthetic thrombus materials were also mechanically tested and compared with the ‘soft’ human blood clots.ResultsMechanical testing quantified the shear modulus and dynamic (elastic) modulus of volunteer human thrombus samples. This data was used to formulate a synthetic blood clot made from a composite polymer hydrogel of polyacrylamide and alginate (PAAM-Alg). The PAAM-Alg interpenetrating network of covalently and ionically cross-linked polymers had tunable elastic and shear moduli properties and shape memory characteristics.ConclusionsDue to its adjustable properties, PAAM-Alg can be modified to mimic various thrombi classifications. Future studies will include obtaining and quantitatively classifying patient thrombectomy samples and altering the PAAM-Alg to mimic the results for use with in vitro thrombectomy studies.
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献