Hemodynamic–morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size

Author:

Xiang Jianping,Yu Jihnhee,Snyder Kenneth V,Levy Elad I,Siddiqui Adnan H,Meng Hui

Abstract

BackgroundWe previously established three logistic regression models for discriminating intracranial aneurysm rupture status based on morphological and hemodynamic analysis of 119 aneurysms. In this study, we tested if these models would remain stable with increasing sample size, and investigated sample sizes required for various confidence levels (CIs).MethodsWe augmented our previous dataset of 119 aneurysms into a new dataset of 204 samples by collecting an additional 85 consecutive aneurysms, on which we performed flow simulation and calculated morphological and hemodynamic parameters, as done previously. We performed univariate significance tests on these parameters, and multivariate logistic regression on significant parameters. The new regression models were compared against the original models. Receiver operating characteristics analysis was applied to compare the performance of regression models. Furthermore, we performed regression analysis based on bootstrapping resampling statistical simulations to explore how many aneurysm cases were required to generate stable models.ResultsUnivariate tests of the 204 aneurysms generated an identical list of significant morphological and hemodynamic parameters as previously (from the analysis of 119 cases). Furthermore, multivariate regression analysis produced three parsimonious predictive models that were almost identical to the previous ones, with model coefficients that had narrower CIs than the original ones. Bootstrapping showed that 10%, 5%, 2%, and 1% convergence levels of CI required 120, 200, 500, and 900 aneurysms, respectively.ConclusionsOur original hemodynamic–morphological rupture prediction models are stable and improve with increasing sample size. Results from resampling statistical simulations provide guidance for designing future large multi-population studies.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3